Structure of 3-Cyano-5-oxo-4,4-diphenyl-2-[(triphenoxyphosphonio)oxy]-2-pyrrolinide

By L. Toupet, Y. Délugeard, J. C. Messager and M. M. Granger
Groupe de Physique Cristalline, ERA au CNRS no 0 15, Université de Rennes, Campus de Beaulieu, 35042 Rennes CEDEX, France

(Received 12 February 1980; accepted 13 February 1981)

Abstract

C}_{35} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{P}\), triclinic, $P \overline{1}, a=9.260$ (4), $b=9.870(13), c=16.610$ (17) $\AA, \alpha=96.77$ (20), $\beta=$ 81.57 (32), $\gamma=88.16(13)^{\circ}, Z=2, D_{c}=1.30 \mathrm{Mg}$ $\mathrm{m}^{-3}, \mu(\mathrm{Mo} K \alpha)=0.144 \mathrm{~mm}^{-1}$. Three-dimensional intensity data were collected on an Enraf-Nonius automatic three-circle diffractometer with Zr -filtered Mo $K a$ radiation and an ω scan mode (scan range $=$ $1 \cdot 20^{\circ}$). This structure has been refined to an R value of 0.077 for 2269 independent reflexions. The molecule is found to have betainic character.

Introduction. The reaction between the $\mathrm{CuCl}-\mathrm{P}(\mathrm{OPh})_{3}$ complex and the pyrrolidinedione (1) results in one of the three compounds ($2 a$), ($2 b$) or ($2 c$).

(1)

$R=\mathrm{C}_{6} \mathrm{H}_{5}$
The structure was thought to be that of ($2 a$) but it was not unambiguously confirmed by classical methods of spectroscopy (${ }^{13} \mathrm{C}$ NMR, ${ }^{31} \mathrm{P}$ NMR, IR). Furthermore, a comparative study of similar compounds (Ketari \& Foucaud, 1978) did not distinguish between ($2 a$), ($2 b$) and (2c) therefore an X-ray analysis was necessary.

Crystals of the title compound were grown by slow evaporation from a solution of anhydrous methanol. The parameters and the space group were determined from Weissenberg photographs. Cell constants were refined by a least-squares analysis of the settings of 66 reflexions. 2269 reflexions with $I>2 \sigma(I)$ were included in the calculations. Neutral-atom scattering factors
were obtained from International Tables for X-ray Crystallography (1974).

Table 1. Final positional coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic thermal parameters with e.s.d.'s in parentheses

	$B_{\text {eq }}=\frac{4}{3} \sum_{i} \sum_{j} \beta_{l j} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$ (Willis \& Pryor, 1975).			
	x	${ }^{\prime}$	z	$B_{\text {eq }}\left(\AA^{2}\right)$
P	0.9728 (2)	0.2752 (2)	0.6409 (1)	3.73 (6)
O(1)	1.0215 (6)	0.4256 (5)	0.6515 (3)	6.02 (8)
O(2)	0.8574 (6)	0.5851 (5)	0.9185 (3)	5.63 (7)
O(3)	0.8088 (5)	0.2487 (4)	0.6759 (3)	4.31 (6)
O(4)	0.9855 (5)	0.2200 (4)	0.5465 (3)	4.09 (6)
O(5)	1.0585 (6)	$0 \cdot 1639$ (5)	0.6751 (3)	5.82 (7)
$\mathrm{N}(1)$	0.9223 (5)	0.4844 (4)	0.7905 (3)	1.71 (5)
$\mathrm{N}(2)$	1.2120 (8)	0.7700 (7)	0.6242 (4)	5.84 (7)
C(1)	1.0092 (7)	0.5168 (6)	0.7190 (4)	3.44 (6)
C(2)	1.0623 (8)	0.6419 (7)	0.7314 (4)	$3 \cdot 61$ (6)
C(3)	1.0259 (8)	0.7017 (6)	0.8213 (4)	$3 \cdot 63$ (6)
C(4)	0.9258 (8)	0.5878 (7)	0.8519 (5)	4.01 (6)
C(5)	$1 \cdot 1464$ (8)	0.7100 (7)	0.6703 (4)	3.83 (6)
C(6)	0.9325 (8)	0.8363 (7)	$0 \cdot 8390$ (4)	$3 \cdot 66$ (6)
C(7)	0.9059 (9)	0.9045 (8)	0.9189 (4)	$5 \cdot 26$ (6)
C(8)	0.8128 (10)	1.0203 (9)	0.9359 (5)	6.17 (7)
C(9)	0.7463 (10)	1.0698 (8)	0.8771 (6)	6.71 (8)
C(10)	0.7728 (9)	1.0031 (8)	0.7981 (5)	5.01 (7)
C(11)	0.8663 (8)	0.8860 (7)	0.7786 (4)	$4 \cdot 19$ (6)
C(12)	$1 \cdot 1676$ (8)	0.7083 (6)	$0 \cdot 8605$ (4)	3.40 (6)
C(13)	$1 \cdot 1998$ (9)	0.6169 (8)	0.9141 (5)	$5 \cdot 17$ (6)
C(14)	1.3369 (11)	0.6205 (9)	0.9431 (5)	6.31 (8)
C(15)	1.4413 (9)	0.7110 (11)	0.9183 (6)	$6 \cdot 23$ (8)
C(16)	1.4084 (9)	0.8022 (9)	0.8670 (5)	$5 \cdot 32$ (7)
C(17)	1.2706 (9)	0.8036 (7)	0.8386 (4)	4.38 (6)
C(18)	$0 \cdot 6828$ (7)	0.3207 (6)	0.6594 (5)	3.75 (6)
C(19)	0.5977 (10)	0.3975 (8)	0.7250 (5)	4.75 (6)
C(20)	0.4673 (12)	0.4593 (9)	0.7113 (7)	6.67 (8)
C(21)	0.4254 (10)	0.4426 (9)	$0 \cdot 6342$ (8)	6.94 (8)
C(22)	0.5158 (10)	0.3664 (8)	0.5678 (5)	$5 \cdot 30$ (7)
C(23)	$0 \cdot 6477$ (9)	0.3039 (7)	0.5801 (5)	$4 \cdot 26$ (7)
C(24)	$1 \cdot 1221$ (8)	0.2102 (7)	0.4932 (4)	$3 \cdot 80$ (6)
C(25)	1.2058 (9)	0.0921 (8)	0.4856 (5)	4.86 (7)
C(26)	1.3371 (11)	0.0818 (9)	$0 \cdot 4308$ (6)	$6 \cdot 42$ (8)
C(27)	1.3772 (10)	0.1883 (11)	0.3846 (5)	6.33 (8)
C(28)	1.2863 (11)	0.3037 (9)	0.3946 (5)	$5 \cdot 39$ (7)
C(29)	1.1576 (10)	0.3160 (7)	0.4498 (5)	4.81 (6)
C(30)	1.1494 (9)	0.1769 (7)	0.7382 (5)	4.29 (6)
C(31)	1.2931 (11)	$0 \cdot 1293$ (9)	0.7146 (6)	$6 \cdot 28$ (8)
C(32)	1.3814 (11)	0.1353 (13)	0.7753 (10)	9.19 (9)
C(33)	1.3291 (17)	$0 \cdot 1847$ (11)	0.8450 (9)	5.61 (7)
C(34)	1.1846 (17)	0.2272 (10)	0.8756 (6)	7.87 (9)
C(35)	1.0887 (10)	0.2236 (8)	0.8175 (5)	$5 \cdot 68$ (7)

Table 2. Atomic coordinates for H atoms

		y	z
H(C7)	0.9590	0.8662	0.9650
H(C8)	0.7922	1.0695	0.9955
H(C)	0.6758	1.1581	0.8907
H(C10)	0.7212	1.0413	0.7524
H(C11)	0.8866	0.9356	0.7187
H(C13)	1.1210	0.5455	0.9318
H(C14)	1.3630	0.5504	0.9833
H(C15)	1.5446	0.7130	0.9396
H(C16)	1.4876	0.8729	0.8488
H(C17)	1.2448	0.8737	0.7992
H(C19)	0.6275	0.4088	0.8856
H(C20)	0.3974	0.5176	0.7606
H(C21)	0.3263	0.4892	0.6253
H(C22)	0.4848	0.3560	0.5084
H(C23)	0.7169	0.2459	0.5304
H(C25)	1.1750	0.0119	0.5205
H(C26)	1.4055	-0.0072	0.4247
H(C27)	1.4739	0.1797	0.3428
H(C28)	1.3167	0.3837	0.3593
H(C29)	1.0894	0.4046	0.4563
H(C31)	1.3339	0.0922	0.6528
H(C32)	1.4944	0.0991	0.7569
H(C33)	1.3998	0.1861	0.8953
H(C34)	1.1455	0.2644	0.9370
H(C35)	0.9756	0.2579	0.8347

The structure was solved with the program MULTAN (Germain, Main \& Woolfson, 1971). The E map computed with the set of best consistency (COMBFOM $=2 \cdot 6136$) revealed 41 of the 43 heavy atoms. The two remaining heavy atoms were located after a Fourier synthesis.

Refinement [program ORFLS (Busing, Martin \& Levy, 1962)] of the atomic positions with isotropic temperature factors gave $R=0 \cdot 13$. This residual R decreased to 0.10 with anisotropic temperature factors. Then a Fourier synthesis revealed all the H atoms of the five aromatic rings. These atoms were introduced in the structure-factor calculations with arbitrary temperature factors, but were not refined. The values of the final residuals $R=\sum| | F_{o}\left|-\left|F_{c}\right|\right| / \sum\left|F_{o}\right|$ and $R_{w}=\left|\sum\right|\left|F_{o}\right|-\left|F_{c}\right|^{2} /\left.\sum\left|F_{o}\right|^{2}\right|^{1 / 2}$ were 0.079 and 0.077 respectively.

The final atomic coordinates are given in Table 1 for the heavy atoms and in Table 2 for the H atoms, their standard deviations being in a reasonable range.*

Discussion. The bond distances and angles, with their standard deviations, are shown in Fig. 1. The e.s.d.'s vary from 0.005 to $0.022 \AA$ for the bond lengths. An ORTEP drawing (Johnson, 1965) of the molecule is given in Fig. 2. The structure of the studied compound

[^0]

Fig. 1. The numbering system, bond lengths $(\dot{\AA})$ and valence angles $\left({ }^{\circ}\right)$ with standard deviations in parentheses.

Fig. 2. Perspective view of the molecule with thermal ellipsoids at 50% probability.
is then the phosphonium betaine ($2 c$). There is no ambiguity in this result: the phosphonium part [$\left.\mathrm{P}^{+}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3}\right]$ of the molecule has a regular tetrahedral geometry and the negative charge, arbitrarily located on the nitrogen atom $\mathrm{N}(1)$, is delocalized along the $\mathrm{O}(2)-\mathrm{C}(4)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(5)-\mathrm{N}(2)$ chain. The bond distances and the planarity (Table 3) of the

Table 3. Distances (\AA) of atoms from the least-squares plane of the five-membered ring with e.s.d.'s in parentheses

$-0.8554 X+0.4592 Y-0.2397 Z$				
C(1)	$-0.029(16)$	$\mathrm{C}(4)$	$0.019(14)$	
$\mathrm{C}(2)$	$0.039(18)$	$\mathrm{N}(1)$	$0.004(12)$	
$\mathrm{C}(3)$	$-0.032(16)$			

five-membered ring confirm this delocalization which furthermore may explain the stability of such a compound. Indeed, isomerization of $2(b)$ is impossible (Ketari \& Foucaud, 1978).

The interatomic distances and bond angles of the phenyl rings do not differ significantly from the expected values. Their mean values are $1.387 \AA$ and 120° respectively. Indeed these five rings are coplanar within $0.018 \AA$. The closest intermolecular non- H atom contact of the structure is $3.33 \AA$. The shortest intermolecular $\mathrm{O} \cdots \mathrm{H}$ or $\mathrm{N} \cdots \mathrm{H}$ distance is $2.54 \AA$ and is too long to be considered a hydrogen-bonding
interaction. The packing of the molecules is thus determined by van der Waals forces.

We thank Dr Ketari and Professor A. Foucaud who suggested this work.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee.
Germain, G., Main, P. \& Woolfson, M. M. (1971). Acta Cryst. A27, 368-376.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee.
Ketari, R. \& Foucaud, A. (1978). Tetrahedron Lett. 46, 4515-45 18.
Willis, B. T. M. \& Pryor, A. W. (1975). Thermal Vibrations in Crystallography, pp. 101-102. Cambridge Univ. Press.

Structure of trans-3-(Diphenylmethylene)-4-morpholinocarbonyl-5-(p-nitrophenyl)tetrahydro-2-furanone

By John Aupers and Peter F. Lindley
Department of Crystallography, Birkbeck College, Malet Street, London WC 1E 7HX, England
and Ahmet E. Baydar and Gerhard V. Boyd
Department of Chemistry, Chelsea College, Manresa Road, London SW 3 LXX, England

(Received 8 January 1981; accepted 17 February 1981)

Abstract

C}_{28} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{6}\), orthorhombic, Pbca, $a=$ 11.093 (2), $b=16.728$ (4), $c=25.537$ (6) $\AA, Z=8$, $D_{c}=1.36 \mathrm{Mg} \mathrm{m}^{-3}, \mu(\mathrm{Cu} K \alpha)=0.805 \mathrm{~mm}^{-1}$. The structure was solved by multisolution direct methods and refined by a full-matrix least-squares method to $R=0.049$ for 2989 reflections. The compound formed by the 'acyl-ene' reaction between morpholinobutenolide and p-nitrobenzaldehyde has a trans configuration of protons across the $\mathrm{C}(4)-\mathrm{C}(5)$ bond.

Introduction. The discovery that various naturally occurring sesquiterpene α-methylene- γ-lactones (1) possess tumour-inhibiting properties has stimulated the search for simpler lactones with physiological activity [for leading references see Kupchan, Hemingway, Werner \& Karim (1969) and Lee, Ibuka, Kim, Vestal \& Hall (1975)]. General syntheses of α-methylene-

γ-lactones continue to be developed, one of which is the 'acyl-ene' reaction (Boyd, Monteil, Lindley \& Mahmoud, 1978). An example of this is the formation of a mixture of the substituted cis- and trans-lactones (3) when the morpholinobutenolide (2) is treated with p-nitrobenzaldehyde (Baydar \& Boyd, 1978). The isomers were separated by fractional crystallization

(1)

(2)

(3)
(C) 1981 International Union of Crystallography

[^0]: * Lists of structure factors and anisotropic thermal parameters for non-H atoms have been deposited with the British Library Lending Division as Supplementary Publication No. SUP 35932 (20 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

